enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  3. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    A single branch of the complex logarithm. The hue of the color is used to show the argument of the complex logarithm. The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis.

  4. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Another example is the p-adic logarithm, the inverse function of the p-adic exponential. Both are defined via Taylor series analogous to the real case. [98] In the context of differential geometry, the exponential map maps the tangent space at a point of a manifold to a neighborhood of that point. Its inverse is also called the logarithmic (or ...

  6. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem.

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  8. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.

  9. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.