enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...

  3. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.

  4. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    t r is the elapsed time for an observer at radial coordinate r within the gravitational field; t is the elapsed time for an observer distant from the massive object (and therefore outside of the gravitational field); r is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object);

  5. General relativity - Wikipedia

    en.wikipedia.org/wiki/General_relativity

    More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation. [64] Gravitational redshift has been measured in the laboratory [65] and using astronomical observations. [66] Gravitational time dilation in the Earth's gravitational ...

  6. Metric tensor (general relativity) - Wikipedia

    en.wikipedia.org/wiki/Metric_tensor_(general...

    The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical ...

  7. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In the Schwarzschild solution, it is assumed that the larger mass M is stationary and it alone determines the gravitational field (i.e., the geometry of space-time) and, hence, the lesser mass m follows a geodesic path through that fixed space-time. This is a reasonable approximation for photons and the orbit of Mercury, which is roughly 6 ...

  8. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    A more explicit description can be given using tensors. The crucial feature of tensors used in this approach is the fact that (once a metric is given) the operation of contracting a tensor of rank R over all R indices gives a number — an invariant — that is independent of the coordinate chart one uses to perform the contraction. Physically ...

  9. Schwarzschild geodesics - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_geodesics

    where the numerator is the gravitational, and the denominator is the kinematic component of the time dilation. For a particle falling in from infinity the left factor equals the right factor, since the in-falling velocity v {\textstyle v} matches the escape velocity c r s r {\textstyle c{\sqrt {\frac {r_{\text{s}}}{r}}}} in this case.