enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sine wave - Wikipedia

    en.wikipedia.org/wiki/Sine_wave

    The displacement of an undamped spring-mass system oscillating around the equilibrium over time is a sine wave. Sinusoids that exist in both position and time also have: a spatial variable x {\displaystyle x} that represents the position on the dimension on which the wave propagates.

  3. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In physics, sometimes units of measurement in which c = 1 are used to simplify equations. Time in a "moving" reference frame is shown to run more slowly than in a "stationary" one by the following relation (which can be derived by the Lorentz transformation by putting ∆x′ = 0, ∆τ = ∆t′):

  4. Phase (waves) - Wikipedia

    en.wikipedia.org/wiki/Phase_(waves)

    This concept can be visualized by imagining a clock with a hand that turns at constant speed, making a full turn every seconds, and is pointing straight up at time . The phase φ ( t ) {\displaystyle \varphi (t)} is then the angle from the 12:00 position to the current position of the hand, at time t {\displaystyle t} , measured clockwise .

  5. Envelope (waves) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(waves)

    In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. [1] The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a ...

  6. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    The above odd function contains two half-sized time-shifted Dirac delta functions. Its sine transform is simply ⁡ (). Likewise, the sine transform of ⁡ is the above plot. Thus, the sine wave function and the time-shifted Dirac delta function form a transform pair.

  7. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.

  8. Leading and lagging current - Wikipedia

    en.wikipedia.org/wiki/Leading_and_Lagging_Current

    Angle notation can easily describe leading and lagging current: . [1] In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be ...

  9. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.