enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross section (geometry) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(geometry)

    The cross-sectional area (′) of an object when viewed from a particular angle is the total area of the orthographic projection of the object from that angle. For example, a cylinder of height h and radius r has A ′ = π r 2 {\displaystyle A'=\pi r^{2}} when viewed along its central axis, and A ′ = 2 r h {\displaystyle A'=2rh} when viewed ...

  3. Prismatoid - Wikipedia

    en.wikipedia.org/wiki/Prismatoid

    If the areas of the two parallel faces are A 1 and A 3, the cross-sectional area of the intersection of the prismatoid with a plane midway between the two parallel faces is A 2, and the height (the distance between the two parallel faces) is h, then the volume of the prismatoid is given by [3] = (+ +).

  4. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. [1] It is one of the Platonic solids, a set of polyhedrons in which the faces are regular polygons that are congruent and the same number of faces meet at a vertex. [2]

  5. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  6. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.

  7. Octahedron - Wikipedia

    en.wikipedia.org/wiki/Octahedron

    The surface area of a regular octahedron can be ascertained by summing all of its eight equilateral triangles, whereas its volume is twice the volume of a square pyramid; if the edge length is , [11] =, =. The radius of a circumscribed sphere (one that touches the octahedron at all vertices), the radius of an inscribed sphere (one that tangent ...

  8. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    H.S.M. Coxeter (Coxeter, 1948, Section 1.9) credits Plato (400 BC) with having made models of them, and mentions that one of the earlier Pythagoreans, Timaeus of Locri, used all five in a correspondence between the polyhedra and the nature of the universe as it was then perceived – this correspondence is recorded in Plato's dialogue Timaeus.

  9. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (Table I: Regular Polytopes, (i) The nine regular polyhedra {p,q} in ordinary space) Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design .