enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Saponification value - Wikipedia

    en.wikipedia.org/wiki/Saponification_value

    Example of saponification reaction of a triglyceride molecule (left) with potassium hydroxide (KOH) yielding glycerol (purple) and salts of fatty acids ().. Saponification value or saponification number (SV or SN) represents the number of milligrams of potassium hydroxide (KOH) or sodium hydroxide (NaOH) required to saponify one gram of fat under the conditions specified.

  3. Saponification - Wikipedia

    en.wikipedia.org/wiki/Saponification

    Saponification is a process of cleaving esters into carboxylate salts and alcohols by the action of aqueous alkali. Typically aqueous sodium hydroxide solutions are used. [1] [2] It is an important type of alkaline hydrolysis. When the carboxylate is long chain, its salt is called a soap. The saponification of ethyl acetate gives sodium acetate ...

  4. Reichert value - Wikipedia

    en.wikipedia.org/wiki/Reichert_value

    The Reichert value is an indicator of how much volatile fatty acid can be extracted from a particular fat or oil through saponification. It is equal to the number of millilitres of 0.1 normal hydroxide solution necessary for the neutralization of the water-soluble volatile fatty acids distilled and filtered from 5 grams of a given saponified fat.

  5. Polenske value - Wikipedia

    en.wikipedia.org/wiki/Polenske_value

    (The hydroxide solution used in such a titration is typically made from sodium hydroxide, potassium hydroxide, or barium hydroxide.) [1] It is measure of the steam volatile and water insoluble fatty acids, chiefly caprylic, capric and lauric acids, present in oil and fat. The value is named for the chemist who developed it, Eduard Polenske. [2]

  6. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.

  7. Water - Wikipedia

    en.wikipedia.org/wiki/Water

    Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H +, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as a hydroxide ion (OH −) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7 in an ideal state.

  8. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Water is the chemical substance with chemical formula H 2 O; one molecule of water has two hydrogen atoms covalently bonded to a single oxygen atom. [26] Water is a tasteless, odorless liquid at ambient temperature and pressure. Liquid water has weak absorption bands at wavelengths of around 750 nm which cause it to appear to have a blue color. [4]

  9. Hydration energy - Wikipedia

    en.wikipedia.org/wiki/Hydration_energy

    If the hydration energy is greater than the lattice energy, then the enthalpy of solution is negative (heat is released), otherwise it is positive (heat is absorbed). [3]The hydration energy should not be confused with solvation energy, which is the change in Gibbs free energy (not enthalpy) as solute in the gaseous state is dissolved. [4]