Search results
Results from the WOW.Com Content Network
Another method of grouping the data is to use some qualitative characteristics instead of numerical intervals. For example, suppose in the above example, there are three types of students: 1) Below normal, if the response time is 5 to 14 seconds, 2) normal if it is between 15 and 24 seconds, and 3) above normal if it is 25 seconds or more, then the grouped data looks like:
Unlike mean and median, the concept of mode also makes sense for "nominal data" (i.e., not consisting of numerical values in the case of mean, or even of ordered values in the case of median). For example, taking a sample of Korean family names, one might find that "Kim" occurs more often than any other name. Then "Kim" would be the mode of the ...
Truncated mean or trimmed mean the arithmetic mean of data values after a certain number or proportion of the highest and lowest data values have been discarded. Interquartile mean a truncated mean based on data within the interquartile range. Midrange the arithmetic mean of the maximum and minimum values of a data set. Midhinge the arithmetic ...
The sample mean and sample covariance are not robust statistics, meaning that they are sensitive to outliers. As robustness is often a desired trait, particularly in real-world applications, robust alternatives may prove desirable, notably quantile-based statistics such as the sample median for location, [4] and interquartile range (IQR) for ...
The term grand mean is used for two different concepts that should not be confused, namely, the overall mean [1] and the mean of means. The overall mean (in a grouped data set) is equal to the sample mean, namely, =.
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...
In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean
For example, the sample mean is an unbiased estimator of the population mean. This means that the expected value of the sample mean equals the true population mean. [1] A descriptive statistic is used to summarize the sample data. A test statistic is used in statistical hypothesis testing. A single statistic can be used for multiple purposes ...