Search results
Results from the WOW.Com Content Network
A synodic day (or synodic rotation period or solar day) is the period for a celestial object to rotate once in relation to the star it is orbiting, and is the basis of solar time. The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars [1] and is the basis of sidereal time.
Due to tidal locking, this equals the time that the Moon takes to complete one synodic orbit around Earth, a synodic lunar month, returning to the same lunar phase. The synodic period is about 29 + 1 ⁄ 2 Earth days, which is about 2.2 days longer than its sidereal period.
On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
The period of the Moon's orbit as defined with respect to the celestial sphere of apparently fixed stars (the International Celestial Reference Frame; ICRF) is known as a sidereal month because it is the time it takes the Moon to return to a similar position among the stars (Latin: sidera): 27.321 661 days (27 d 7 h 43 min 11.6 s).
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
Definition Sidereal month: 27.321 662: with respect to the distant stars (13.36874634 passes per solar orbit) Synodic month: 29.530 589: with respect to the Sun (phases of the Moon, 12.36874634 passes per solar orbit) Tropical month: 27.321 582: with respect to the vernal point (precesses in ~26,000 years) Anomalistic month: 27.554 550
Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal rotation period). This is similar to how the time kept by a sundial can be used to find the location of the Sun