enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The finite-sample distributions of likelihood-ratio statistics are generally unknown. [ 10 ] The likelihood-ratio test requires that the models be nested – i.e. the more complex model can be transformed into the simpler model by imposing constraints on the former's parameters.

  3. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    It is possible to do a calculation of likelihood ratios for tests with continuous values or more than two outcomes which is similar to the calculation for dichotomous outcomes. For this purpose, a separate likelihood ratio is calculated for every level of test result and is called interval or stratum specific likelihood ratios. [4]

  4. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  5. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Log-linear analysis uses a likelihood ratio statistic that has an approximate chi-square ... 1. Odds ratios are independent of the sample size; 2. Odds ratios are not ...

  6. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.

  7. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]

  8. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution. Its properties were first investigated by Karl Pearson in 1900. [1]

  9. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.