enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycosidic bond - Wikipedia

    en.wikipedia.org/wiki/Glycosidic_bond

    Glycosidic bonds of the form discussed above are known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers S-glycosidic bonds (which form thioglycosides ), where the oxygen of the glycosidic bond is replaced with a sulfur atom.

  3. Glycolipid - Wikipedia

    en.wikipedia.org/wiki/Glycolipid

    Glycolipid. Glycolipids are lipids with a carbohydrate attached by a glycosidic (covalent) bond. [1] Their role is to maintain the stability of the cell membrane and to facilitate cellular recognition, which is crucial to the immune response and in the connections that allow cells to connect to one another to form tissues. [2]

  4. Glycogen - Wikipedia

    en.wikipedia.org/wiki/Glycogen

    α(1→4)-glycosidic linkages in the glycogen oligomer α(1→4)-glycosidic and α(1→6)-glycosidic linkages in the glycogen oligomer. Glycogen is a branched biopolymer consisting of linear chains of glucose residues with an average chain length of approximately 8–12 glucose units and 2,000-60,000 residues per one molecule of glycogen. [20] [21]

  5. Glycoside hydrolase - Wikipedia

    en.wikipedia.org/wiki/Glycoside_hydrolase

    Glycoside hydrolases are found in essentially all domains of life. In prokaryotes , they are found both as intracellular and extracellular enzymes that are largely involved in nutrient acquisition. One of the important occurrences of glycoside hydrolases in bacteria is the enzyme beta-galactosidase (LacZ), which is involved in regulation of ...

  6. Peptidoglycan - Wikipedia

    en.wikipedia.org/wiki/Peptidoglycan

    Lysozyme, which is found in tears and constitutes part of the body's innate immune system exerts its antibacterial effect by breaking the β-(1,4)-glycosidic bonds in peptidoglycan (see above). Lysozyme is more effective in acting against gram-positive bacteria , in which the peptidoglycan cell wall is exposed, than against gram-negative ...

  7. Glycogen debranching enzyme - Wikipedia

    en.wikipedia.org/wiki/Glycogen_debranching_enzyme

    Phosphorylase can only cleave α-1,4-glycosidic bond between adjacent glucose molecules in glycogen but branches also exist as α-1,6 linkages. When phosphorylase reaches four residues from a branching point it stops cleaving; because 1 in 10 residues is branched, cleavage by phosphorylase alone would not be sufficient in mobilizing glycogen ...

  8. Glycoside - Wikipedia

    en.wikipedia.org/wiki/Glycoside

    There are also numerous enzymes that can form and break glycosidic bonds. The most important cleavage enzymes are the glycoside hydrolases, and the most important synthetic enzymes in nature are glycosyltransferases. Genetically altered enzymes termed glycosynthases have been developed that can form glycosidic bonds in excellent yield ...

  9. α-Amylase - Wikipedia

    en.wikipedia.org/wiki/Α-Amylase

    α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]