Ad
related to: greatest common factors polynomials calculator math problems pdfkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.
If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is O(n 2). This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication.
An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n 1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as x − m.
For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.
Here, a greatest common divisor of a and b is an element d that divides both a and b, and such that every other common divisor of a and b divides d. All greatest common divisors of a and b are associated. Any UFD is integrally closed. In other words, if R is a UFD with quotient field K, and if an element k in K is a root of a monic polynomial ...
Here the greatest common divisor of 0 and 0 is taken to be 0.The integers x and y are called Bézout coefficients for (a, b); they are not unique.A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that | x | ≤ | b/d | and | y | ≤ | a/d |; equality occurs only if one of a and b is a multiple ...
Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials. Gauss's lemma asserts that the product of two primitive polynomials is primitive. (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2])
At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree. In the case of a non-square-free polynomial, if neither a nor b is a multiple root of p , then V ( a ) − V ( b ) is the number of distinct real roots of P .
Ad
related to: greatest common factors polynomials calculator math problems pdfkutasoftware.com has been visited by 10K+ users in the past month