Ad
related to: how to find second derivative parametric equationseducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In calculus, a parametric derivative is a derivative of a dependent variable with respect to another dependent variable that is taken when both variables depend on an independent third variable, usually thought of as "time" (that is, when the dependent variables are x and y and are given by parametric equations in t).
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
The second equation follows from applying the chain rule to a solution u, and the third follows by taking an exterior derivative of the relation =. Manipulating these equations gives Manipulating these equations gives
In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter if often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .
This equation is an equation only of y'' and y', meaning it is reducible to the general form described above and is, therefore, separable. Since it is a second-order separable equation, collect all x variables on one side and all y' variables on the other to get: (′) (′) =.
For a smooth curve given by parametric equations, a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e., changes sign. For a smooth curve which is a graph of a twice differentiable function, an inflection point is a point on the graph at which the second derivative has an isolated zero and ...
A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.
Ad
related to: how to find second derivative parametric equationseducator.com has been visited by 10K+ users in the past month