Search results
Results from the WOW.Com Content Network
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
A material is a substance or mixture of substances that constitutes an object.Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function.
Materials scientists emphasize understanding how the history of a material (processing) influences its structure, and also the material's properties and performance. The understanding of processing structure properties relationships is called the materials paradigm.
Properties may also be classified with respect to the directionality of their nature. For example, isotropic properties do not change with the direction of observation, and anisotropic properties do have spatial variance. It may be difficult to determine whether a given property is a material property or not.
Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained.
Strengthening mechanisms are accompanied by the caveat that some other mechanical properties of the material may degenerate in an attempt to make the material stronger. For example, in grain boundary strengthening, although yield strength is maximized with decreasing grain size, ultimately, very small grain sizes make the material brittle.
A composite material (also called a composition material or shortened to composite, which is the common name) is a material which is produced from two or more constituent materials. [1] These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual ...
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]