Search results
Results from the WOW.Com Content Network
Memory hierarchy affects performance in computer architectural design, algorithm predictions, and lower level programming constructs involving locality of reference. Designing for high performance requires considering the restrictions of the memory hierarchy, i.e. the size and capabilities of each component.
Data locality is a typical memory reference feature of regular programs (though many irregular memory access patterns exist). It makes the hierarchical memory layout profitable. In computers, memory is divided into a hierarchy in order to speed up data accesses. The lower levels of the memory hierarchy tend to be slower, but larger.
The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine.While building the computer Z1 in 1936, Konrad Zuse described in two patent applications for his future projects that machine instructions could be stored in the same storage used for data, i.e., the stored-program concept.
Cache hierarchy, or multi-level cache, is a memory architecture that uses a hierarchy of memory stores based on varying access speeds to cache data. Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores.
These are all slow, due to the need to access a slower level of the memory hierarchy, so a well-functioning TLB is important. Indeed, a TLB miss can be more expensive than an instruction or data cache miss, due to the need for not just a load from main memory, but a page walk, requiring several memory accesses.
The root directory is the base of the hierarchy, and is usually stored at some fixed location on disk. A hierarchical file system contrasts with a flat file system , where information about all files is stored in a single directory, and there are no subdirectories.
A von Neumann architecture scheme. The von Neumann architecture—also known as the von Neumann model or Princeton architecture—is a computer architecture based on the First Draft of a Report on the EDVAC, [1] written by John von Neumann in 1945, describing designs discussed with John Mauchly and J. Presper Eckert at the University of Pennsylvania's Moore School of Electrical Engineering.
The lines represent the connection and or ownership between activities and subactivities as they are used in organization charts. [4] In structured analysis structure charts, according to Wolber (2009), "are used to specify the high-level design, or architecture, of a computer program. As a design tool, they aid the programmer in dividing and ...