Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
The types of objects that can be iterated across (my_list in the example) are based on classes that inherit from the library class ITERABLE. The iteration form of the Eiffel loop can also be used as a boolean expression when the keyword loop is replaced by either all (effecting universal quantification) or some (effecting existential ...
Python does not contain the classical for loop, rather a foreach loop is used to iterate over the output of the built-in range() function which returns an iterable sequence of integers. for i in range ( 1 , 6 ): # gives i values from 1 to 5 inclusive (but not 6) # statements print ( i ) # if we want 6 we must do the following for i in range ( 1 ...
An example of a Python generator returning an iterator for the Fibonacci numbers using Python's yield statement follows: def fibonacci ( limit ): a , b = 0 , 1 for _ in range ( limit ): yield a a , b = b , a + b for number in fibonacci ( 100 ): # The generator constructs an iterator print ( number )
Python supports most object oriented programming (OOP) techniques. It allows polymorphism, not only within a class hierarchy but also by duck typing. Any object can be used for any type, and it will work so long as it has the proper methods and attributes. And everything in Python is an object, including classes, functions, numbers and modules.
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The following example is done in Ada which supports both early exit from loops and loops with test in the middle. Both features are very similar and comparing both code snippets will show the difference: early exit must be combined with an if statement while a condition in the middle is a self-contained construct.