Search results
Results from the WOW.Com Content Network
A Zero Liquid Discharge (ZLD) process diagram that highlights how wastewater from an industrial process is converted to solids and treated water for reuse via a ZLD plant. Concept of ZLD Zero Liquid Discharge (ZLD) is a classification of water treatment processes intended to reduce wastewater efficiently and produce clean water that is suitable ...
In the recent years, there has been greater prevalence in brine management due to global push for zero liquid discharge (ZLD)/minimal liquid discharge (MLD). [48] In ZLD/MLD techniques, a closed water cycle is used to minimize water discharges from a system for water reuse. This concept has been gaining traction in recent years, due to ...
In 1999 and 2002 Petro-Canada's MacKay River facility was the first to install 1999 and 2002 GE SAGD zero-liquid discharge (ZLD) systems using a combination of the new evaporative technology and crystallizer system in which all the water was recycled and only solids were discharged off site. [1]
Additionally, water streams with very high salt concentrations, that cannot be separated by reverse osmosis, can be concentrated by electrodialysis up to concentrations near to saturation. This is very useful for Zero Liquid Discharge treatments, providing a reduction in energy consumption compared to evaporation.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.
The liquid–liquid critical point of a solution, which occurs at the critical solution temperature, occurs at the limit of the two-phase region of the phase diagram. In other words, it is the point at which an infinitesimal change in some thermodynamic variable (such as temperature or pressure) leads to separation of the mixture into two ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Schematic of a multiple effect desalination plant. The first stage is at the top. Pink areas are vapor, lighter blue areas are liquid feed water. Stronger turquoise is condensate. It is not shown how feed water enters other stages than the first. F - feed water in. S - heating steam in. C - heating steam out. W - Fresh water (condensate) out.