Search results
Results from the WOW.Com Content Network
The Fp2, F8, T4, T6, and O2 electrodes are placed at intervals of 5%, 10%, 10%, 10%, 10%, and 5%, respectively, measured above the right ear, from front (Fpz) to back (Oz). The same is done for the odd-numbered electrodes on the left side, to complete the full circumference. Measurement methods for placement of the F3, F4, P3, and P4 points differ.
Most electrodes work over a limited range of conditions, such as pH or temperature, outside of this range the electrodes behavior becomes unpredictable. The advantage of a pseudo-reference electrode is that the resulting variation is factored into the system allowing researchers to accurately study systems over a wide range of conditions.
An EEG recording setup using the 10-10 system of electrode placement. EEG is the gold standard diagnostic procedure to confirm epilepsy.The sensitivity of a routine EEG to detect interictal epileptiform discharges at epilepsy centers has been reported to be in the range of 29–55%. [8]
An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials (chemicals) depending on the type of battery.
Depending on the preparation and precise placement, an extracellular configuration may pick up the activity of several nearby cells simultaneously, termed multi-unit recording. As electrode size increases, the resolving power decreases. Larger electrodes are sensitive only to the net activity of many cells, termed local field potentials. Still ...
Depending on whether the reaction on the electrode is a reduction or an oxidation, the working electrode is called cathodic or anodic, respectively. Common working electrodes can consist of materials ranging from noble metals such as gold or platinum , to inert carbon such as glassy carbon , boron -doped diamond [ 4 ] or pyrolytic carbon , and ...
To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.
The most common types of reference electrodes used in analytical chemistry include the standard hydrogen electrode, the saturated calomel electrode, and the Ag/AgCl electrode. [3] The standard hydrogen electrode (SHE) is the primary reference electrode that has a potential of 0 volts at all temperatures and a pressure of 1 atm.