Search results
Results from the WOW.Com Content Network
In fluid dynamics, the Knudsen equation is used to describe how gas flows through a tube in free molecular flow. When the mean free path of the molecules in the gas is larger than or equal to the diameter of the tube, the molecules will interact more often with the walls of the tube than with each other. For typical tube dimensions, this occurs ...
Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe , or tube ).
Free molecular flow describes the fluid dynamics of gas where the mean free path of the molecules is larger than the size of the chamber or of the object under test. For tubes/objects of the size of several cm, this means pressures well below 10 −3 mbar. This is also called the regime of high vacuum, or even ultra-high vacuum.
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
On the gas branch of the EOS, a small change in molar volume corresponds to a much smaller change in pressure than for the liquid branch. Thus, the perturbation of the molar gas volume is small. Unfortunately, there are two versions that occur in science and industry.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
This may be written in the following form, known as the Ostwald–Freundlich equation: =, where is the actual vapour pressure, is the saturated vapour pressure when the surface is flat, is the liquid/vapor surface tension, is the molar volume of the liquid, is the universal gas constant, is the radius of the droplet, and is temperature.
To calculate the pressure drop in a given reactor, the following equation may be deduced: = + | |. This arrangement of the Ergun equation makes clear its close relationship to the simpler Kozeny-Carman equation, which describes laminar flow of fluids across packed beds via the first term on the right hand side.