Search results
Results from the WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Thus, if a two-dimensional array has rows and columns indexed from 1 to 10 and 1 to 20, respectively, then replacing B by B + c 1 − 3c 2 will cause them to be renumbered from 0 through 9 and 4 through 23, respectively. Taking advantage of this feature, some languages (like FORTRAN 77) specify that array indices begin at 1, as in mathematical ...
A dynamic array is not the same thing as a dynamically allocated array or variable-length array, either of which is an array whose size is fixed when the array is allocated, although a dynamic array may use such a fixed-size array as a back end. [1]
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by
Stable version uses an external array of size n to hold all of the bins. Same as the LSD variant, it can sort non-integers. MSD Radix Sort (in-place) — No No d=1 for in-place, / recursion levels, no count array. Spreadsort: n
Given an array a of n items, suppose we want an array that holds the same elements in reversed order and to dispose of the original. One seemingly simple way to do this is to create a new array of equal size, fill it with copies from a in the appropriate order and then delete a.
For example, in the Pascal programming language, the declaration type MyTable = array [1..4,1..2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.
Basis: Heap's Algorithm trivially permutes an array A of size 1 as outputting A is the one and only permutation of A. Induction: Assume Heap's Algorithm permutes an array of size i. Using the results from the previous proof, every element of A will be in the "buffer" once when the first i elements are permuted.