Search results
Results from the WOW.Com Content Network
In multiphase flow in porous media, the relative permeability of a phase is a dimensionless measure of the effective permeability of that phase. It is the ratio of the effective permeability of that phase to the absolute permeability. It can be viewed as an adaptation of Darcy's law to multiphase flow.
magnetostatics (ratio of the permeability of a specific medium to free space) Relative permittivity = electrostatics (ratio of capacitance of test capacitor with dielectric material versus vacuum) Specific gravity: SG (same as Relative density) Stefan number: Ste
In a uniform medium if the permeability is constant, then variation of the signal velocity will be dependent only on variation of the dielectric constant. In a transmission line, signal velocity is the reciprocal of the square root of the capacitance-inductance product, where inductance and capacitance are typically expressed as per-unit length.
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
Furthermore, TEM-function in two-phase flow systems is an extension of RQI (rock quality index) for single-phase systems. [ 1 ] Also, TEM-function can be used for averaging relative permeability curves (for each fluid phase separately, i.e., water, oil, gas, CO 2 ).
In materials with relative permittivity, ε r, and relative permeability, μ r, the phase velocity of light becomes =, which is usually [note 5] less than c. In addition, E and B are perpendicular to each other and to the direction of wave propagation, and are in phase with each other.
where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).