Search results
Results from the WOW.Com Content Network
Reasons for measuring throughput in networks. People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or ...
Using Little's Law, one can calculate throughput with the equation: = where: I is the number of units contained within the system, inventory; T is the time it takes for all the inventory to go through the process, flow time; R is the rate at which the process is delivering throughput, flow rate or throughput.
Throughput is usually measured in bits per second (bit/s, sometimes abbreviated bps), and sometimes in packets per second (p/s or pps) or data packets per time slot. The system throughput or aggregate throughput is the sum of the data rates that are delivered over all channels in a network. [1] Throughput represents digital bandwidth consumption.
In order to calculate the data transmission rate, one must multiply the transfer rate by the information channel width. For example, a data bus eight-bytes wide (64 bits) by definition transfers eight bytes in each transfer operation; at a transfer rate of 1 GT/s, the data rate would be 8 × 10 9 B /s, i.e. 8 GB/s, or approximately 7.45 GiB /s.
The packet transmission time in seconds can be obtained from the packet size in bit and the bit rate in bit/s as: Packet transmission time = Packet size / Bit rate. Example: Assuming 100 Mbit/s Ethernet, and the maximum packet size of 1526 bytes, results in Maximum packet transmission time = 1526×8 bit / (100 × 10 6 bit/s) ≈ 122 μs
Throughput Accounting uses three measures of income and expense: The chart illustrates a typical throughput structure of income (sales) and expenses (TVC and OE). T=Sales less TVC and NP=T less OE. Throughput (T) is the rate at which the system produces "goal units".
Throughput of an architecture is the execution rate of a task: = = =, where ρ is the execution density (e.g., the number of stages in an instruction pipeline for a pipelined architecture); A is the execution capacity (e.g., the number of processors for a parallel architecture).
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...