Search results
Results from the WOW.Com Content Network
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
The Voronoi cells in a weighted Voronoi diagram are defined in terms of a distance function. The distance function may specify the usual Euclidean distance, or may be some other, special distance function. In weighted Voronoi diagrams, each site has a weight that influences the distance computation.
For a given set of points in space, a Voronoi diagram is a decomposition of space into cells, one for each given point, so that anywhere in space, the closest given point is inside the cell. This is equivalent to nearest neighbor interpolation, by assigning the function value at the given point to all the points inside the cell. [3]
The purple-shaded region is the new Voronoi cell, after inserting the point to be interpolated (black dot). The weights represent the intersection areas of the purple-cell with each of the seven surrounding cells. Natural-neighbor interpolation or Sibson interpolation is a method of spatial interpolation, developed by Robin Sibson. [1]
The cell for a given circle C consists of all the points for which the power distance to C is smaller than the power distance to the other circles. The power diagram is a form of generalized Voronoi diagram, and coincides with the Voronoi diagram of the circle centers in the case that all the circles have equal radii. [1] [2] [3] [4]
A Voronoi diagram is a special kind of decomposition of a metric space determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set of points. This diagram is named after Georgy Voronoi, also called a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation after Peter Gustav Lejeune ...
The general mathematical concept embodied in a Wigner–Seitz cell is more commonly called a Voronoi cell, and the partition of the plane into these cells for a given set of point sites is known as a Voronoi diagram. The construction process for the Wigner–Seitz cell of a hexagonal lattice. The cell may be chosen by first picking a lattice ...
Worley noise, also called Voronoi noise and cellular noise, is a noise function introduced by Steven Worley in 1996. Worley noise is an extension of the Voronoi diagram that outputs a real value at a given coordinate that corresponds to the Distance of the nth nearest seed (usually n=1) and the seeds are distributed evenly through the region.