enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.

  3. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.

  4. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    A process with this property is said to be Markov or Markovian and known as a Markov process. Two famous classes of Markov process are the Markov chain and Brownian motion. Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition. Namely that the statespace of ...

  5. Category:Markov processes - Wikipedia

    en.wikipedia.org/wiki/Category:Markov_processes

    Markov chain mixing time; Markov chain tree theorem; Markov Chains and Mixing Times; Markov chains on a measurable state space; Markov decision process; Markov information source; Markov kernel; Markov chain; Markov property; Markov renewal process; Markov reward model; Markovian arrival process; Matrix analytic method; Multiscale decision-making

  6. Dynamic discrete choice - Wikipedia

    en.wikipedia.org/wiki/Dynamic_discrete_choice

    The optimization problem follows a Markov decision process The states x t {\displaystyle x_{t}} follow a Markov chain . That is, attainment of state x t {\displaystyle x_{t}} depends only on the state x t − 1 {\displaystyle x_{t-1}} and not x t − 2 {\displaystyle x_{t-2}} or any prior state.

  7. Partially observable Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Partially_observable...

    A partially observable Markov decision process (POMDP) is a generalization of a Markov decision process (MDP). A POMDP models an agent decision process in which it is assumed that the system dynamics are determined by an MDP, but the agent cannot directly observe the underlying state.

  8. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.

  9. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov decision process: Partially observable Markov decision process: Bernoulli scheme. A Bernoulli scheme is a special case of a Markov chain where the ...