enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The resting membrane potential is not an equilibrium potential as it relies on the constant expenditure of energy (for ionic pumps as mentioned above) for its maintenance. It is a dynamic diffusion potential that takes this mechanism into account—wholly unlike the pillows equilibrium potential, which is true no matter the nature of the system ...

  3. Hyperpolarization (biology) - Wikipedia

    en.wikipedia.org/wiki/Hyperpolarization_(biology)

    Hyperpolarization is a change in a cell's membrane potential that makes it more negative. Cells typically have a negative resting potential, with neuronal action potentials depolarizing the membrane. When the resting membrane potential is made more negative, it increases the minimum stimulus needed to surpass the needed threshold.

  4. Depolarization - Wikipedia

    en.wikipedia.org/wiki/Depolarization

    After an action potential travels down the axon of a neuron, the resting membrane potential of the axon must be restored before another action potential can travel the axon. This is known as the recovery period of the neuron, during which the neuron cannot transmit another action potential.

  5. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    During this stage the membrane potential becomes more negative, returning towards resting potential. The undershoot, or afterhyperpolarization , phase is the period during which the membrane potential temporarily becomes more negatively charged than when at rest (hyperpolarized).

  6. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Plasma membranes exhibit electrochemical polarity through establishment and maintenance of a resting membrane potential. Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), and chloride (Cl - ) to establish and maintain this polarity.

  7. Threshold potential - Wikipedia

    en.wikipedia.org/wiki/Threshold_potential

    Most often, the threshold potential is a membrane potential value between –50 and –55 mV, [1] but can vary based upon several factors. A neuron's resting membrane potential (–70 mV) can be altered to either increase or decrease likelihood of reaching threshold via sodium and potassium ions.

  8. Sodium channel - Wikipedia

    en.wikipedia.org/wiki/Sodium_channel

    With its inactivation gate closed, the channel is said to be inactivated. With the Na + channel no longer contributing to the membrane potential, the potential decreases back to its resting potential as the neuron repolarizes and subsequently hyperpolarizes itself, and this constitutes the falling phase of an action potential. The refractory ...

  9. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...