enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resting potential - Wikipedia

    en.wikipedia.org/wiki/Resting_potential

    The resting membrane potential is not an equilibrium potential as it relies on the constant expenditure of energy (for ionic pumps as mentioned above) for its maintenance. It is a dynamic diffusion potential that takes this mechanism into account—wholly unlike the pillows equilibrium potential, which is true no matter the nature of the system ...

  3. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...

  4. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    Values of resting membrane potential in most animal cells usually vary between the potassium reversal potential (usually around -80 mV) and around -40 mV. The resting potential in excitable cells (capable of producing action potentials) is usually near -60 mV—more depolarized voltages would lead to spontaneous generation of action potentials.

  5. Voltage-gated calcium channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_calcium_channel

    At physiologic or resting membrane potential, VGCCs are normally closed. They are activated (i.e.: opened) at depolarized membrane potentials and this is the source of the "voltage-gated" epithet. The concentration of calcium (Ca 2+ ions) is normally several thousand times higher outside the cell than inside.

  6. Graded potential - Wikipedia

    en.wikipedia.org/wiki/Graded_potential

    The resting membrane potential is usually around –70 mV. The typical neuron has a threshold potential ranging from –40 mV to –55 mV. Temporal summation occurs when graded potentials within the postsynaptic cell occur so rapidly that they build on each other before the previous ones fade.

  7. Steady state (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(biochemistry)

    In other words, there is a differential distribution of ions on either side of the cell membrane - that is, the amount of ions on either side is not equal and therefore a charge separation exists. [8] However, ions move across the cell membrane such that a constant resting membrane potential is achieved; this is ionic steady state. [8]

  8. Inward-rectifier potassium channel - Wikipedia

    en.wikipedia.org/wiki/Inward-rectifier_potassium...

    At membrane potentials negative to potassium's reversal potential, inwardly rectifying K + channels support the flow of positively charged K + ions into the cell, pushing the membrane potential back to the resting potential. This can be seen in figure 1: when the membrane potential is clamped negative to the channel's resting potential (e.g ...

  9. Polarized membrane - Wikipedia

    en.wikipedia.org/wiki/Polarized_membrane

    Plasma membranes exhibit electrochemical polarity through establishment and maintenance of a resting membrane potential. Cells with polarized plasma membranes must buffer and adequately distribute certain ions, such as sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), and chloride (Cl - ) to establish and maintain this polarity.