Search results
Results from the WOW.Com Content Network
a:(b,c,d), b:(c,a,d), c:(a,b,d), d:(a,b,c) In this ranking, each of A, B, and C is the most preferable person for someone. In any solution, one of A, B, or C must be paired with D and the other two with each other (for example AD and BC), yet for anyone who is partnered with D, another member will have rated them highest, and D's partner will ...
In a uniformly-random instance of the stable marriage problem with n men and n women, the average number of stable matchings is asymptotically . [6] In a stable marriage instance chosen to maximize the number of different stable matchings, this number is an exponential function of n. [7]
The median of any three solutions is formed by setting each variable to the value it holds in the majority of the three solutions. This median always forms another solution to the instance. [32] Feder (1994) describes an algorithm for efficiently listing all solutions to a given 2-satisfiability instance, and for solving several related ...
LeetCode LLC, doing business as LeetCode, is an online platform for coding interview preparation. The platform provides coding and algorithmic problems intended for users to practice coding . [ 1 ] LeetCode has gained popularity among job seekers in the software industry and coding enthusiasts as a resource for technical interviews and coding ...
Langford pairings are named after C. Dudley Langford, who posed the problem of constructing them in 1958. Langford's problem is the task of finding Langford pairings for a given value of n. [1] The closely related concept of a Skolem sequence [2] is defined in the same way, but instead permutes the sequence 0, 0, 1, 1, ..., n − 1, n − 1.
Radcliffe and Scott showed that if n is prime, 3 is sufficient, and for any n, 9 times the number of prime factors of n is sufficient. Pebody showed that for any n, 6 is sufficient and, in a followup paper, that for odd n, 4 is sufficient. He conjectured that 4 is again sufficient for even n greater than 10, but this remains unproven.
The number of solutions for this board is either zero or one, depending on whether the vector is a permutation of n / 2 (,) and n / 2 (,) pairs or not. For example, in the first two boards shown above the sequences of vectors would be
Assume that a solution minimizes the total number of crossings. This gives a total of five crossings - three pair crossings and two solo-crossings. Also, assume we always choose the fastest for the solo-cross. First, we show that if the two slowest persons (C and D) cross separately, they accumulate a total crossing time of 15.