Search results
Results from the WOW.Com Content Network
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.
The Woodward cis-hydroxylation (also known as the Woodward reaction) is the chemical reaction of alkenes with iodine and silver acetate in wet acetic acid to form cis-diols. [1] [2] (conversion of olefin into cis-diol) The reaction is named after its discoverer, Robert Burns Woodward. The Woodward cis-hydroxylation
A 3D model of ethylene, the simplest alkene. In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. [1] The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.
The barrier for the rotation of the alkene about the M-centroid vector is a measure of the strength of the M-alkene pi-bond. Low symmetry complexes are suitable for analysis of these rotational barriers associated with the metal-ethene bond.In Cp Rh(C 2 H 4 )(C 2 F 4 ), the ethene ligand is observed to rotate with a barrier near 12 kcal/mol but ...
Cyclization reactions, or intramolecular addition reactions, can be used to form cycloalkenes. These reactions primarily form cyclopentenones, a cycloalkene that contains two functional groups: the cyclopentene and a ketone group. [12] However, other cycloalkenes, such as Cyclooctatetraene, can be formed as a result of this reaction. [11]
In organic chemistry, the ene reaction (also known as the Alder-ene reaction by its discoverer Kurt Alder in 1943) is a chemical reaction between an alkene with an allylic hydrogen (the ene) and a compound containing a multiple bond (the enophile), in order to form a new σ-bond with migration of the ene double bond and 1,5 hydrogen shift.
In organosulfur chemistry, the thiol-ene reaction (also alkene hydrothiolation) is an organic reaction between a thiol (R−SH) and an alkene (R 2 C=CR 2) to form a thioether (R−S−R'). This reaction was first reported in 1905, [ 1 ] but it gained prominence in the late 1990s and early 2000s for its feasibility and wide range of applications.
The radicals formed from alkenyl peroxides can be utilized in organic radical reactions. For example, they can mediate hydrogen atom abstraction reactions and thus lead to the functionalization of C-H bonds, [7] or they can be used to introduce ketone residues by addition of the alkenyloxyl radicals to alkenes. [8] [9] [10]