enow.com Web Search

  1. Ad

    related to: special linear group generator calculator calculus 2 solutions math

Search results

  1. Results from the WOW.Com Content Network
  2. Special linear group - Wikipedia

    en.wikipedia.org/wiki/Special_linear_group

    In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant

  3. SL2 (R) - Wikipedia

    en.wikipedia.org/wiki/SL2(R)

    SL(2, R) is the group of all linear transformations of R 2 that preserve oriented area. It is isomorphic to the symplectic group Sp(2, R) and the special unitary group SU(1, 1). It is also isomorphic to the group of unit-length coquaternions. The group SL ± (2, R) preserves unoriented area: it may reverse orientation.

  4. Generator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Generator_(mathematics)

    The generator of any continuous symmetry implied by Noether's theorem, the generators of a Lie group being a special case. In this case, a generator is sometimes called a charge or Noether charge, examples include: angular momentum as the generator of rotations, [3] linear momentum as the generator of translations, [3]

  5. Linear group - Wikipedia

    en.wikipedia.org/wiki/Linear_group

    The group GL n (K) itself; The special linear group SL n (K) (the subgroup of matrices with determinant 1); The group of invertible upper (or lower) triangular matrices; If g i is a collection of elements in GL n (K) indexed by a set I, then the subgroup generated by the g i is a linear group.

  6. Special linear Lie algebra - Wikipedia

    en.wikipedia.org/wiki/Special_linear_Lie_algebra

    In mathematics, the special linear Lie algebra of order over a field, denoted or (,), is the Lie algebra of all the matrices (with entries in ) with trace zero and with the Lie bracket [,]:= given by the commutator. This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras.

  7. PSL (2,7) - Wikipedia

    en.wikipedia.org/wiki/PSL(2,7)

    PSL(2, 2) is isomorphic to the symmetric group S 3, and PSL(2, 3) is isomorphic to alternating group A 4. In fact, PSL(2, 7) is the second smallest nonabelian simple group, after the alternating group A 5 = PSL(2, 5) = PSL(2, 4). The number of conjugacy classes and irreducible representations is 6. The sizes of conjugacy classes are 1, 21, 42 ...

  8. Projective linear group - Wikipedia

    en.wikipedia.org/wiki/Projective_linear_group

    A noteworthy subgroup of the projective general linear group PGL(2, Z) (and of the projective special linear group PSL(2, Z[i])) is the symmetries of the set {0, 1, ∞} ⊂ P 1 (C) [note 6] which is known as the anharmonic group, and arises as the symmetries of the six cross-ratios.

  9. Ring of modular forms - Wikipedia

    en.wikipedia.org/wiki/Ring_of_modular_forms

    In 1973, Pierre Deligne and Michael Rapoport showed that the ring of modular forms M(Γ) is finitely generated when Γ is a congruence subgroup of SL(2, Z). [2]In 2003, Lev Borisov and Paul Gunnells showed that the ring of modular forms M(Γ) is generated in weight at most 3 when is the congruence subgroup () of prime level N in SL(2, Z) using the theory of toric modular forms. [3]

  1. Ad

    related to: special linear group generator calculator calculus 2 solutions math