enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  3. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in .

  4. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  5. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.

  6. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Plot of the Chebyshev rational functions of order n=0,1,2,3 and 4 between x=0.01 and 100. Legendre and Chebyshev polynomials provide orthogonal families for the interval [−1, 1] while occasionally orthogonal families are required on [0, ∞). In this case it is convenient to apply the Cayley transform first, to bring the argument into [−1, 1].

  7. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The matrix X is subjected to an orthogonal decomposition, e.g., the QR decomposition as follows. = , where Q is an m×m orthogonal matrix (Q T Q=I) and R is an n×n upper triangular matrix with >. The residual vector is left-multiplied by Q T.

  8. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Thus, the vector is parallel to , the vector is orthogonal to , and = +. The projection of a onto b can be decomposed into a direction and a scalar magnitude by writing it as a 1 = a 1 b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} } where a 1 {\displaystyle a_{1}} is a scalar, called the scalar projection of a onto b , and b̂ is ...

  9. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length.