Search results
Results from the WOW.Com Content Network
List of orders of magnitude for energy; Factor (joules) SI prefix Value Item 10 −34: 6.626 × 10 −34 J: Energy of a photon with a frequency of 1 hertz. [1]8 × 10 −34 J: Average kinetic energy of translational motion of a molecule at the lowest temperature reached (38 picokelvin [2] as of 2021)
The dyne per centimetre is a unit traditionally used to measure surface tension. For example, the surface tension of distilled water is 71.99 dyn/cm at 25 °C (77 °F). [ 4 ] ( In SI units this is 71.99 × 10 −3 N/m or 71.99 mN/m .)
Time for a quantity to decay to half its initial value s T: Heat: Q: Thermal energy: joule (J) L 2 M T −2: Heat capacity: C p: Energy per unit temperature change J/K L 2 M T −2 Θ −1: extensive Heat flux density: ϕ Q: Heat flow per unit time per unit surface area W/m 2: M T −3: Illuminance: E v: Wavelength-weighted luminous flux per ...
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre. In the CGS base units, it is equal to one gram centimetre-squared per second-squared (g⋅cm 2 /s 2). It is thus equal to 10 −7 joules or 100 nanojoules in SI units. 1 erg = 10 −7 J = 100 nJ; 1 erg = 10 −10 sn⋅m = 100 psn⋅m = 100 ...
≡ 1.054 804 × 10 3 J = 1.054 804 × 10 3 J: British thermal unit (60 °F) BTU 60 °F: ≈ 1.054 68 × 10 3 J: British thermal unit (63 °F) BTU 63 °F: ≈ 1.0546 × 10 3 J: calorie (International Table) cal IT: ≡ 4.1868 J = 4.1868 J: calorie (mean) cal mean: 1 ⁄ 100 of the energy required to warm one gram of air-free water from 0 °C to ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Although Boltzmann first linked entropy and probability in 1877, the relation was never expressed with a specific constant until Max Planck first introduced k, and gave a more precise value for it (1.346 × 10 −23 J/K, about 2.5% lower than today's figure), in his derivation of the law of black-body radiation in 1900–1901. [11]