enow.com Web Search

  1. Ads

    related to: singular points of a quadratic vector equation examples worksheet grade

Search results

  1. Results from the WOW.Com Content Network
  2. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.

  3. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    Hence, it is technically more correct to discuss singular points of a smooth mapping here rather than a singular point of a curve. The above definitions can be extended to cover implicit curves which are defined as the zero set ⁠ ⁠ of a smooth function, and it is not necessary just to consider algebraic varieties. The definitions can be ...

  4. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    The simplest example of singularities are curves that cross themselves. But there are other types of singularities, like cusps. For example, the equation y 2 − x 3 = 0 defines a curve that has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at ...

  5. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...

  6. Singularity theory - Wikipedia

    en.wikipedia.org/wiki/Singularity_theory

    This is another branch of singularity theory, based on earlier work of Hassler Whitney on critical points. Roughly speaking, a critical point of a smooth function is where the level set develops a singular point in the geometric sense. This theory deals with differentiable functions in general, rather than just polynomials.

  7. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    Repeatedly blowing up the singular points of a curve will eventually resolve the singularities. The main task with this method is to find a way to measure the complexity of a singularity and to show that blowing up improves this measure. There are many ways to do this. For example, one can use the arithmetic genus of the curve.

  1. Ads

    related to: singular points of a quadratic vector equation examples worksheet grade
  1. Related searches singular points of a quadric vector equation examples worksheet grade

    singular points of a curvewhat is a quadric surface
    singularity equation