enow.com Web Search

  1. Ads

    related to: singular points of a quadratic vector equation examples worksheet 6th

Search results

  1. Results from the WOW.Com Content Network
  2. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...

  3. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.

  4. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  5. Singularity theory - Wikipedia

    en.wikipedia.org/wiki/Singularity_theory

    This is another branch of singularity theory, based on earlier work of Hassler Whitney on critical points. Roughly speaking, a critical point of a smooth function is where the level set develops a singular point in the geometric sense. This theory deals with differentiable functions in general, rather than just polynomials.

  6. Degenerate bilinear form - Wikipedia

    en.wikipedia.org/wiki/Degenerate_bilinear_form

    The study of real, quadratic algebras shows the distinction between types of quadratic forms. The product zz* is a quadratic form for each of the complex numbers, split-complex numbers, and dual numbers. For z = x + ε y, the dual number form is x 2 which is a degenerate quadratic form. The split-complex case is an isotropic form, and the ...

  7. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    Repeatedly blowing up the singular points of a curve will eventually resolve the singularities. The main task with this method is to find a way to measure the complexity of a singularity and to show that blowing up improves this measure. There are many ways to do this. For example, one can use the arithmetic genus of the curve.

  1. Ads

    related to: singular points of a quadratic vector equation examples worksheet 6th