enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem. To factorize a small integer n using mental or pen-and-paper arithmetic, the simplest method is trial division : checking if the number is divisible by prime numbers 2 ...

  3. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  5. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    Pollard's rho algorithm is an algorithm for integer factorization. It was invented by John Pollard in 1975. [ 1 ] It uses only a small amount of space, and its expected running time is proportional to the square root of the smallest prime factor of the composite number being factorized.

  6. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    Pollard's p − 1 algorithm is a number theoretic integer factorization algorithm, invented by John Pollard in 1974. It is a special-purpose algorithm, meaning that it is only suitable for integers with specific types of factors; it is the simplest example of an algebraic-group factorisation algorithm.

  7. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    It takes quantum gates of order ((⁡) (⁡ ⁡) (⁡ ⁡ ⁡)) using fast multiplication, [7] or even ((⁡) (⁡ ⁡)) utilizing the asymptotically fastest multiplication algorithm currently known due to Harvey and Van Der Hoven, [8] thus demonstrating that the integer factorization problem can be efficiently solved on a quantum computer and ...

  8. Pocklington primality test - Wikipedia

    en.wikipedia.org/wiki/Pocklington_primality_test

    In mathematics, the Pocklington–Lehmer primality test is a primality test devised by Henry Cabourn Pocklington [1] and Derrick Henry Lehmer. [2] The test uses a partial factorization of N − 1 {\displaystyle N-1} to prove that an integer N {\displaystyle N} is prime .

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Many properties of a natural number n can be seen or directly computed from the prime factorization of n. The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p 1).