Search results
Results from the WOW.Com Content Network
Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane. The boundary E 3 is therefore the empty set. Indeed, consider a point in the plane, say (x 0,y 0). This point lies on a tangent line if and only if there exists a t such that
The envelope of the tangent planes to M along a curve c is a surface with vanishing Gaussian curvature, which by Minding's theorem, must be locally isometric to the Euclidean plane. This identification allows parallel transport to be defined, because in the Euclidean plane all tangent planes are identified with the space itself.
A tangent plane of the sphere with two vectors in it. A Riemannian metric allows one to take the inner product of these vectors. Let be a smooth manifold.For each point , there is an associated vector space called the tangent space of at .
In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...
The first fundamental form may be viewed as a family of positive definite symmetric bilinear forms on the tangent plane at each point of the surface depending smoothly on the point. This perspective helps one calculate the angle between two curves on S intersecting at a given point. This angle is equal to the angle between the tangent vectors ...
The tangent plane at a regular point p is the unique plane passing through p and having a direction parallel to the two row vectors of the Jacobian matrix. The tangent plane is an affine concept, because its definition is independent of the choice of a metric.
Regularity of the parametrization means that r 1 and r 2 are linearly independent for any (u 1,u 2) in the domain of r, and hence span the tangent plane to S at each point. Equivalently, the cross product r 1 × r 2 is a nonzero vector normal to the surface. The parametrization thus defines a field of unit normal vectors n:
Development can be generalized further using flat connections. From this point of view, rolling the tangent plane over a surface defines an affine connection on the surface (it provides an example of parallel transport along a curve), and a developable surface is one for which this connection is flat.