Search results
Results from the WOW.Com Content Network
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations: k ( T ) = P Z e − Δ E / R T , {\displaystyle k(T)=PZe^{-\Delta E/RT},} where P is the steric (or probability) factor and Z is the collision frequency, and Δ E is energy input required to overcome the activation barrier.
Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...
Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]
In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential ...
This expression describes the rate at which species ′ is consumed in reaction . The constants A k {\displaystyle A_{k}} and E k {\displaystyle E_{k}} , the Arrhenius pre-exponential factor and activation energy, respectively, are adjusted for specific reactions, often as the result of experimental measurements.
In these equations e is the base of natural logarithms, h is the Planck constant, k B is the Boltzmann constant and T the absolute temperature. R′ is the ideal gas constant. The factor is needed because of the pressure dependence of the reaction rate. R′ = 8.3145 × 10 −2 (bar·L)/(mol·K). [1]
In the equation, k B and h are the Boltzmann and Planck constants, respectively. Although the equations look similar, it is important to note that the Gibbs energy contains an entropic term in addition to the enthalpic one. In the Arrhenius equation, this entropic term is accounted for by the pre-exponential factor A.