enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  4. Pre-exponential factor - Wikipedia

    en.wikipedia.org/wiki/Pre-exponential_factor

    In chemical kinetics, the pre-exponential factor or A factor is the pre-exponential constant in the Arrhenius equation (equation shown below), an empirical relationship between temperature and rate coefficient. It is usually designated by A when determined from experiment, while Z is usually left for collision frequency. The pre-exponential ...

  5. Aquilanti–Mundim deformed Arrhenius model - Wikipedia

    en.wikipedia.org/wiki/Aquilanti–Mundim_Deformed...

    Svante Arrhenius (1889) equation is often used to characterize the effect of temperature on the rates of chemical reactions. [1] The Arrhenius formula gave a simple and powerful law, which in a vast generality of cases describes the dependence on absolute temperature of the rate constant as following,

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s −1 and t 1/2 ~ 2 h. Thus, a free energy of activation of this magnitude corresponds to a typical reaction that proceeds to completion overnight at room ...

  7. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.

  8. Q10 (temperature coefficient) - Wikipedia

    en.wikipedia.org/wiki/Q10_(temperature_coefficient)

    The rate of muscle twitch contractions and relaxations are thermally dependent (Q 10 of 2.0-2.5), whereas maximum contraction, e.g., tetanic contraction, is thermally independent. [ 6 ] Muscles of some ectothermic species. e.g., sharks, show less thermal dependence at lower temperatures than endothermic species [ 4 ] [ 7 ]

  9. Entropy of activation - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_activation

    R′ is the ideal gas constant. The factor is needed because of the pressure dependence of the reaction rate. R′ = 8.3145 × 10 −2 (bar·L)/(mol·K). [1] The value of ΔS ‡ provides clues about the molecularity of the rate determining step in a reaction, i.e. the number of molecules that enter this step. [2]