enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The simplest of these is called elliptic geometry and it is considered a non-Euclidean geometry due to its lack of parallel lines. [12] By formulating the geometry in terms of a curvature tensor, Riemann allowed non-Euclidean geometry to apply to higher dimensions. Beltrami (1868) was the first to apply Riemann's geometry to spaces of negative ...

  3. Geometry of Complex Numbers - Wikipedia

    en.wikipedia.org/wiki/Geometry_of_Complex_Numbers

    Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .

  4. Category:Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/.../Category:Non-Euclidean_geometry

    Within contemporary geometry there are many kinds of geometry that are quite different from Euclidean geometry, first encountered in the forms of elementary geometry, plane geometry of triangles and circles, and solid geometry. The conventional meaning of Non-Euclidean geometry is the one set in the nineteenth century: the fields of elliptic ...

  5. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Consequently, hyperbolic geometry has been called Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. Gauss mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before, [ 64 ] though he did not publish.

  6. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    Another type of non-Euclidean geometry is the hyperbolic plane, and arrangements of lines in this geometry have also been studied. [50] Any finite set of lines in the Euclidean plane has a combinatorially equivalent arrangement in the hyperbolic plane (e.g. by enclosing the vertices of the arrangement by a large circle and interpreting the ...

  7. G. B. Halsted - Wikipedia

    en.wikipedia.org/wiki/G._B._Halsted

    George Bruce Halsted (November 25, 1853 – March 16, 1922), usually cited as G. B. Halsted, was an American mathematician who explored foundations of geometry and introduced non-Euclidean geometry into the United States through his translations of works by Bolyai, Lobachevski, Saccheri, and Poincaré.

  8. Sports At Any Cost: Take Our College Sports Subsidy Data

    projects.huffingtonpost.com/ncaa/reporters-note

    At most colleges, athletics are a money-losing proposition that would not exist without billions of dollars in mandatory student contributions — a burden that grows greater every year, according to our review of five years of NCAA financial reports obtained through public records requests from 201 D-1 universities.

  9. Journey into Geometries - Wikipedia

    en.wikipedia.org/wiki/Journey_into_Geometries

    Journey into Geometries is a book on non-Euclidean geometry. It was written by Hungarian-Australian mathematician Márta Svéd and published in 1991 by the Mathematical Association of America in their MAA Spectrum book series.