Search results
Results from the WOW.Com Content Network
The global form of an analytic function is completely determined by its local behavior in the following sense: if f and g are two analytic functions defined on the same connected open set U, and if there exists an element c ∈ U such that f (n) (c) = g (n) (c) for all n ≥ 0, then f(x) = g(x) for all x ∈ U. If a power series with radius of ...
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...
The additive formal group law F(x,y) = x + y has height ∞, as its pth power map is 0. The multiplicative formal group law F(x,y) = x + y + xy has height 1, as its pth power map is (1 + x) p − 1 = x p. The formal group law of an elliptic curve has height 1 if the curve is ordinary and height 2 if the curve is supersingular.
The six most common definitions of the exponential function = for real values are as follows.. Product limit. Define by the limit: = (+).; Power series. Define e x as the value of the infinite series = =! = + +! +! +! + (Here n! denotes the factorial of n.
In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell . Given an arithmetic function f {\displaystyle f} and a prime p {\displaystyle p} , define the formal power series f p ( x ) {\displaystyle f_{p}(x)} , called the Bell series ...
For each such , there is a local coordinate of at (which is a smooth point) such that the coordinates and can be expressed as formal power series of , say = + (since is algebraically closed, we can assume the valuation coefficient to be 1) and = +: then there is a unique Puiseux series of the form = / + (a power series in /), such that ...