Search results
Results from the WOW.Com Content Network
The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.
The classic Finkelstein reaction entails the conversion of an alkyl chloride or an alkyl bromide to an alkyl iodide by treatment with a solution of sodium iodide in acetone. Sodium iodide is soluble in acetone while sodium chloride and sodium bromide are not; [ 3 ] therefore, the reaction is driven toward products by mass action due to the ...
An example of a simple chain reaction is the thermal decomposition of acetaldehyde (CH 3 CHO) to methane (CH 4) and carbon monoxide (CO). The experimental reaction order is 3/2, [4] which can be explained by a Rice-Herzfeld mechanism. [5] This reaction mechanism for acetaldehyde has 4 steps with rate equations for each step :
The bimolecular nucleophilic substitution (S N 2) is a type of reaction mechanism that is common in organic chemistry. In the S N 2 reaction, a strong nucleophile forms a new bond to an sp 3 -hybridised carbon atom via a backside attack, all while the leaving group detaches from the reaction center in a concerted (i.e. simultaneous) fashion.
Diffusion control is more likely in solution where diffusion of reactants is slower due to the greater number of collisions with solvent molecules. Reactions where the activated complex forms easily and the products form rapidly are most likely to be limited by diffusion control. Examples are those involving catalysis and enzymatic reactions.
For example, in the hydrogenation reaction of ethylene the H 2 molecule must approach the bonding zone between the atoms, and only a few of all the possible collisions fulfill this requirement. To alleviate this problem, a new concept must be introduced: the steric factor ρ .
As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?