Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
Gravitational time dilation near a large, slowly rotating, nearly spherical body, such as the Earth or Sun can be reasonably approximated as follows: [21] = where: t r is the elapsed time for an observer at radial coordinate r within the gravitational field;
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
The changing rates of clocks allowed Einstein to conclude that light waves change frequency as they move, and the frequency/energy relationship for photons allowed him to see that this was best interpreted as the effect of the gravitational field on the mass–energy of the photon. To calculate the changes in frequency in a nearly static ...
In the Schwarzschild solution, it is assumed that the larger mass M is stationary and it alone determines the gravitational field (i.e., the geometry of space-time) and, hence, the lesser mass m follows a geodesic path through that fixed space-time. This is a reasonable approximation for photons and the orbit of Mercury, which is roughly 6 ...
He defined mass as the ratio of force to acceleration, not as the ratio of momentum to velocity, so he needed to distinguish between the mass = parallel to the direction of motion and the mass = perpendicular to the direction of motion (where = / / is the Lorentz factor, v is the relative velocity between the ether and the object, and c is the ...
where the numerator is the gravitational, and the denominator is the kinematic component of the time dilation. For a particle falling in from infinity the left factor equals the right factor, since the in-falling velocity v {\textstyle v} matches the escape velocity c r s r {\textstyle c{\sqrt {\frac {r_{\text{s}}}{r}}}} in this case.
A more explicit description can be given using tensors. The crucial feature of tensors used in this approach is the fact that (once a metric is given) the operation of contracting a tensor of rank R over all R indices gives a number — an invariant — that is independent of the coordinate chart one uses to perform the contraction. Physically ...