Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.
The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical ...
The classical Newtonian theory of gravity may then be recovered in the limit as the ratio / goes to zero. In the limit that both r Q / r {\displaystyle r_{Q}/r} and r s / r {\displaystyle r_{\text{s}}/r} go to zero, the metric becomes the Minkowski metric for special relativity .
Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unspecified, "time dilation" usually refers to the effect due to velocity.
More generally, processes close to a massive body run more slowly when compared with processes taking place farther away; this effect is known as gravitational time dilation. [64] Gravitational redshift has been measured in the laboratory [65] and using astronomical observations. [66] Gravitational time dilation in the Earth's gravitational ...
In the Schwarzschild solution, it is assumed that the larger mass M is stationary and it alone determines the gravitational field (i.e., the geometry of space-time) and, hence, the lesser mass m follows a geodesic path through that fixed space-time. This is a reasonable approximation for photons and the orbit of Mercury, which is roughly 6 ...
where the numerator is the gravitational, and the denominator is the kinematic component of the time dilation. For a particle falling in from infinity the left factor equals the right factor, since the in-falling velocity v {\textstyle v} matches the escape velocity c r s r {\textstyle c{\sqrt {\frac {r_{\text{s}}}{r}}}} in this case.