enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy.

  3. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The establishment of the concept of internal energy distinguishes the ...

  5. Dulong–Petit law - Wikipedia

    en.wikipedia.org/wiki/Dulong–Petit_law

    Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...

  6. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    where and denote respectively the total kinetic energy and the total potential energy of the component closed homogeneous system, and denotes its internal energy. [ 34 ] [ 62 ] Potential energy can be exchanged with the surroundings of the system when the surroundings impose a force field, such as gravitational or electromagnetic, on the system.

  7. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    In a collision with a coefficient of restitution e, the change in kinetic energy can be written as = (), where v rel is the relative velocity of the bodies before collision. For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system.

  8. Geiger–Nuttall law - Wikipedia

    en.wikipedia.org/wiki/Geiger–Nuttall_law

    where / is the half-life, E the total kinetic energy (of the alpha particle and the daughter nucleus), and A and B are coefficients that depend on the isotope's atomic number Z. The law works best for nuclei with even atomic number and even atomic mass.

  9. Equipartition theorem - Wikipedia

    en.wikipedia.org/wiki/Equipartition_theorem

    The (Newtonian) kinetic energy of a particle of mass m, velocity v is given by = | | = (+ +), where v x, v y and v z are the Cartesian components of the velocity v.Here, H is short for Hamiltonian, and used henceforth as a symbol for energy because the Hamiltonian formalism plays a central role in the most general form of the equipartition theorem.