Search results
Results from the WOW.Com Content Network
The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of ...
Fig 1: Typical example of Nyquist frequency and rate. They are rarely equal, because that would require over-sampling by a factor of 2 (i.e. 4 times the bandwidth). In signal processing, the Nyquist rate, named after Harry Nyquist, is a value equal to twice the highest frequency of a given function or signal
Early uses of the term Nyquist frequency, such as those cited above, are all consistent with the definition presented in this article.Some later publications, including some respectable textbooks, call twice the signal bandwidth the Nyquist frequency; [6] [7] this is a distinctly minority usage, and the frequency at twice the signal bandwidth is otherwise commonly referred to as the Nyquist rate.
A bandlimited signal can be fully reconstructed from its samples, provided that the sampling rate exceeds twice the bandwidth of the signal. This minimum sampling rate is called the Nyquist rate associated with the Nyquist–Shannon sampling theorem.
In the context of, for example, the sampling theorem and Nyquist sampling rate, bandwidth typically refers to baseband bandwidth. In the context of Nyquist symbol rate or Shannon-Hartley channel capacity for communication systems it refers to passband bandwidth. The Rayleigh bandwidth of a simple radar pulse is defined as the inverse of its ...
To derive the criterion, we first express the received signal in terms of the transmitted symbol and the channel response. Let the function h(t) be the channel impulse response, x[n] the symbols to be sent, with a symbol period of T s; the received signal y(t) will be in the form (where noise has been ignored for simplicity):
%PDF-1.6 %âãÏÓ 673 0 obj > endobj xref 673 26 0000000016 00000 n 0000003169 00000 n 0000003288 00000 n 0000003417 00000 n 0000003920 00000 n 0000004034 00000 ...
Nyquist's original paper also provided the generalized noise for components having partly reactive response, e.g., sources that contain capacitors or inductors. [6] Such a component can be described by a frequency-dependent complex electrical impedance (). The formula for the power spectral density of the series noise voltage is