Search results
Results from the WOW.Com Content Network
A 1995 study of lava flows on Steens Mountain, Oregon appeared to suggest the magnetic field once shifted at a rate of up to 6° per day at some time in Earth's history, a surprising result. [39] However, in 2014 one of the original authors published a new study which found the results were actually due to the continuous thermal demagnitization ...
If the pressure from particles within the magnetosphere is neglected, it is possible to estimate the distance to the part of the magnetosphere that faces the Sun.The condition governing this position is that the dynamic ram pressure from the solar wind is equal to the magnetic pressure from the Earth's magnetic field: [note 1] (()) where and are the density and velocity of the solar wind, and ...
A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1] [2] It is created by a celestial body with an active interior dynamo.
STORM employs a single lunar swing by to enter a circular 90° inclination orbit with a radius of 30 Earth radii and a period of 9.65 days which precesses a full 360° per year. This orbit enables observations of the magnetosphere’s response to varying solar wind conditions from the full range of vantage points over time scales encompassing ...
The heliospheric current sheet rotates along with the Sun with a period of about 25 days, during which time the peaks and troughs of the skirt pass through the Earth's magnetosphere, interacting with it. Near the surface of the Sun, the magnetic field produced by the radial electric current in the sheet is of the order of 5 × 10 −6 T. [2]
In 1990, its northern drift accelerated, increasing from 9.3 miles (15 kilometers) per year to 34.2 miles (55 kilometers) per year, Chulliat said. The shift “was unprecedented as far as the ...
The Earth's magnetosheath typically occupies the region of space approximately 10 Earth radii on the upwind (Sun-facing) side of the planet, extending significantly further out on the downwind side due to the pressure of the solar wind. The exact location and width of the magnetosheath depends on variables such as solar activity. [6]
The interaction between solar wind and geomagnetic field eventually combine to result in the formation of an electrical current layer, which is called the magnetopause. This electric current layer confines the Earth's magnetic field. The region in which the magnetopause is enclosed in is known as the magnetosphere. [7]