Search results
Results from the WOW.Com Content Network
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
first radiation constant: 3.741 771 852... × 10 −16 W⋅m 2: 0 [10] = / first radiation constant for spectral radiance 1.191 042 972... × 10 −16 W⋅m 2 ⋅sr −1: 0 [11] = / second radiation constant: 1.438 776 877... × 10 −2 m⋅K: 0 [12] [e] Wien wavelength displacement law constant: 2.897 771 955... × 10 −3 m⋅K: 0 [13]
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
1 J·m 3 /mol 2 = 1 m 6 ·Pa/mol 2 = 10 L 2 ·bar/mol 2. 1 L 2 atm/mol 2 = 0.101325 J·m 3 /mol 2 = 0.101325 Pa·m 6 /mol 2. 1 dm 3 /mol = 1 L/mol = 1 m 3 /kmol = 0.001 m 3 /mol (where kmol is kilomoles = 1000 moles)
In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:
Some constants, such as the ideal gas constant, R, do not describe the state of a system, and so are not properties. On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant ), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore ...
The van der Waals equation of state may be written as (+) =where is the absolute temperature, is the pressure, is the molar volume and is the universal gas constant.Note that = /, where is the volume, and = /, where is the number of moles, is the number of particles, and is the Avogadro constant.
R is the gas constant; M is molar mass of the substance, and thus may be calculated as a product of particle mass, m, and Avogadro constant, N A: =. For diatomic nitrogen (N 2, the primary component of air) [note 1] at room temperature (300 K), this gives