Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
[1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946. The ordinal scale is distinguished from the nominal scale by having a ranking. [2] It also differs from the interval scale and ratio scale by not having category widths that represent equal increments of the underlying attribute. [3]
In comparison, variables with unordered scales are nominal variables. [1] Visual difference between nominal and ordinal data (w/examples), the two scales of categorical data [2] A nominal variable, or nominal group, is a group of objects or ideas collectively grouped by a particular qualitative characteristic. [3]
These extensions converge with the family of intra-class correlations (ICCs), so there is a conceptually related way of estimating reliability for each level of measurement from nominal (kappa) to ordinal (ordinal kappa or ICC—stretching assumptions) to interval (ICC, or ordinal kappa—treating the interval scale as ordinal), and ratio (ICCs).
The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one transformation. Ordinal measurements have imprecise differences between consecutive values, but have a meaningful order to those values, and permit any ...
The only pair that does not support the hypothesis are the two runners with ranks 5 and 6, because in this pair, the runner from Group B had the faster time. By the Kerby simple difference formula, 95% of the data support the hypothesis (19 of 20 pairs), and 5% do not support (1 of 20 pairs), so the rank correlation is r = .95 − .05 = .90.
Numbers indicate the relative position of items, but not the magnitude of difference. An example is a preference ranking. Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. Examples are attitude scales and opinion scales.