enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature.

  3. List of gravitationally rounded objects of the Solar System

    en.wikipedia.org/wiki/List_of_gravitationally...

    This list does not include small Solar System bodies, but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined. The Sun's orbital characteristics are listed in relation to the Galactic Center , while all other objects are listed in order of their distance from the Sun.

  4. Gravitational compression - Wikipedia

    en.wikipedia.org/wiki/Gravitational_compression

    In astrophysics, gravitational compression is a phenomenon in which gravity, acting on the mass of an object, compresses it, reducing its size and increasing the object's density. In the core of a star such as the Sun, gravitational pressure is balanced by the outward thermal pressure from fusion reactions, temporarily halting gravitational ...

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Using the integral form of Gauss's Law, this formula can be extended to any pair of objects of which one is far more massive than the other — like a planet relative to any man-scale artifact. The distances between planets and between the planets and the Sun are (by many orders of magnitude) larger than the sizes of the sun and the planets.

  6. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious forces are to be expected, provides a suitable explanation. But a freely falling ...

  7. Philosophiæ Naturalis Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Philosophiæ_Naturalis...

    Newton estimated the mass ratios Sun:Jupiter and Sun:Saturn, [48] and pointed out that these put the centre of the Sun usually a little way off the common center of gravity, but only a little, the distance at most "would scarcely amount to one diameter of the Sun". [49]

  8. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Putting the Sun immobile at the origin, when the Earth is moving in an orbit of radius R with velocity v presuming that the gravitational influence moves with velocity c, moves the Sun's true position ahead of its optical position, by an amount equal to vR/c, which is the travel time of gravity from the sun to the Earth times the relative ...

  9. Equivalence principle - Wikipedia

    en.wikipedia.org/wiki/Equivalence_principle

    The strong equivalence principle can be tested by 1) finding orbital variations in massive bodies (Sun-Earth-Moon), 2) variations in the gravitational constant (G) depending on nearby sources of gravity or on motion, or 3) searching for a variation of Newton's gravitational constant over the life of the universe [14]: 47