enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    Figure 1B: Low-pass filter (1st-order, one-pole) Bode magnitude plot (top) and Bode phase plot (bottom). The red data curve is approximated by the straight black line. In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system.

  3. Dielectric spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Dielectric_spectroscopy

    The real and imaginary parts of permittivity are shown, and various processes are depicted: ionic and dipolar relaxation, and atomic and electronic resonances at higher energies. [ 1 ] Dielectric spectroscopy (which falls in a subcategory of the impedance spectroscopy ) measures the dielectric properties of a medium as a function of frequency .

  4. Smith chart - Wikipedia

    en.wikipedia.org/wiki/Smith_chart

    The Smith chart (sometimes also called Smith diagram, Mizuhashi chart (水橋チャート), Mizuhashi–Smith chart (水橋スミスチャート), [1] [2] [3] Volpert–Smith chart (Диаграмма Вольперта—Смита) [4] [5] or Mizuhashi–Volpert–Smith chart) is a graphical calculator or nomogram designed for electrical and electronics engineers specializing in radio ...

  5. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Bode magnitude plot for the voltages across the elements of an RLC series circuit. Natural frequency ω 0 = 1 rad/s, damping ratio ζ = 0.4. Sinusoidal steady state is represented by letting s = jω, where j is the imaginary unit. Taking the magnitude of the above equation with this substitution:

  6. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  7. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...

  8. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    For a system to be stable, its transfer function must have no poles whose real parts are positive. If the transfer function is strictly stable, the real parts of all poles will be negative and the transient behavior will tend to zero in the limit of infinite time. The steady-state output will be:

  9. Marginal stability - Wikipedia

    en.wikipedia.org/wiki/Marginal_stability

    Since the locations of the marginal poles must be exactly on the imaginary axis or unit circle (for continuous time and discrete time systems respectively) for a system to be marginally stable, this situation is unlikely to occur in practice unless marginal stability is an inherent theoretical feature of the system.