Search results
Results from the WOW.Com Content Network
Aspect ratio (aeronautics) An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing ...
The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)
Thickness-to-chord ratio. a=chord, b=thickness, thickness-to-chord ratio = b/a. The F-104 wing has a very low thickness-to-chord ratio of 3.36%. In aeronautics, the thickness-to-chord ratio, sometimes simply chord ratio or thickness ratio, compares the maximum vertical thickness of a wing to its chord. It is a key measure of the performance of ...
Wing configuration. The Spitfire wing may be classified as: "a conventional low-wing cantilever monoplane with unswept elliptical wings of moderate aspect ratio and slight dihedral". The wing configuration of a fixed-wing aircraft (including both gliders and powered aeroplanes) is its arrangement of lifting and related surfaces.
The Oswald efficiency is defined for the cases where the overall coefficient of drag of the wing or airplane has a constant+quadratic dependence on the aircraft lift coefficient. where. For conventional fixed-wing aircraft with moderate aspect ratio and sweep, Oswald efficiency number with wing flaps retracted is typically between 0.7 and 0.85 ...
First flight. 1949. The Condor K-10 Shoestring (originally known as the Ast Special and the Mercury Air Shoestring) was a Formula One Air Racing aircraft built by Carl and Vincent Ast to compete in the Cleveland National Air Races in 1949. It was a highly streamlined mid-wing cantilever monoplane with fixed tailwheel undercarriage.
As a consequence, aircraft for which a high lift-to-drag ratio is desirable, such as gliders or long-range airliners, typically have high aspect ratio wings. Such wings however have disadvantages with respect to structural constraints and maneuverability, as evidenced by combat and aerobatic planes which usually feature short, stubby wings ...
Aspect ratio (aeronautics) – In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23]