enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continued fraction (generalized) - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    Euler's continued fraction formula is still the basis of many modern proofs of convergence of continued fractions. In 1761, Johann Heinrich Lambert gave the first proof that π is irrational, by using the following continued fraction for tan x: [8]

  3. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  4. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...

  5. Rhind Mathematical Papyrus 2/n table - Wikipedia

    en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus...

    The table consisted of 26 unit fraction series of the form 1/n written as sums of other rational numbers. [9] The Akhmim wooden tablet wrote difficult fractions of the form 1/n (specifically, 1/3, 1/7, 1/10, 1/11 and 1/13) in terms of Eye of Horus fractions which were fractions of the form ⁠ 1 / 2 k ⁠ and remainders expressed in terms of a ...

  6. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 85 ⁠.

  7. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]

  8. Egyptian fraction - Wikipedia

    en.wikipedia.org/wiki/Egyptian_fraction

    For instance, Fibonacci represents the fraction8 / 11 ⁠ by splitting the numerator into a sum of two numbers, each of which divides one plus the denominator: ⁠ 8 / 11 ⁠ = ⁠ 6 / 11 ⁠ + ⁠ 2 / 11 ⁠. Fibonacci applies the algebraic identity above to each these two parts, producing the expansion ⁠ 8 / 11 ⁠ = ⁠ 1 / 2 ...

  9. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    A two dimensional geometric series diagram Nicole Oresme used to determine that the infinite series 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + 6/64 + 7/128 + ... converges to 2. In addition to his elegantly simple proof of the divergence of the harmonic series, Nicole Oresme [22] proved that the arithmetico-geometric series known as Gabriel's Staircase, [23]