Search results
Results from the WOW.Com Content Network
Aspect ratio (aeronautics) An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing ...
Wing configuration. The Spitfire wing may be classified as: "a conventional low-wing cantilever monoplane with unswept elliptical wings of moderate aspect ratio and slight dihedral". The wing configuration of a fixed-wing aircraft (including both gliders and powered aeroplanes) is its arrangement of lifting and related surfaces.
The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)
Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. [1]: 5.14 The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. [2]: 369 Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips.
For a given wing area, a high aspect ratio wing will produce less induced drag than a wing of low aspect ratio. [16] While induced drag is inversely proportional to the square of the wingspan, not necessarily inversely proportional to aspect ratio, if the wing area is held constant, then induced drag will be inversely proportional to aspect ...
Canard (aeronautics) In aeronautics, a canard is a wing configuration in which a small forewing or foreplane is placed forward of the main wing of a fixed-wing aircraft or a weapon. The term "canard" may be used to describe the aircraft itself, the wing configuration, or the foreplane. [1][2][3] Canard wings are also extensively used in guided ...
Trapezoidal planform. In aeronautics, a trapezoidal wing is a straight-edged and tapered wing planform. It may have any aspect ratio and may or may not be swept. [1][2][3] The thin, unswept, short-span, low-aspect-ratio trapezoidal configuration offers some advantages for high-speed flight and has been used on a small number of aircraft types ...
In two-dimensional flow around a uniform wing of infinite span, the slope of the lift curve is determined primarily by the trailing edge angle. The slope is greatest if the angle is zero; and decreases as the angle increases. [6] [7] For a wing of finite span, the aspect ratio of the wing also significantly influences the slope of the curve. As ...